Pressure Schur Complement Preconditioners for the Discrete Oseen Problem
نویسندگان
چکیده
We consider several preconditioners for the pressure Schur complement of the discrete steady Oseen problem. Two of the preconditioners are well known from the literature and the other is new. Supplemented with an appropriate approximate solve for an auxiliary velocity subproblem these approaches give rise to a family of the block preconditioners for the matrix of the discrete Oseen system. In the paper we critically review possible advantages and difficulties of using various Schur complement preconditioners. We recall existing eigenvalue bounds for preconditioned Schur complement and prove such with the newly proposed preconditioner. These bounds hold both for LBB stable and stabilized finite elements. Results of numerical experiments for several model 2D and 3D problems are presented. In experiments we use LBB stable finite element methods on uniform triangular and tetrahedral meshes. One particular conclusion is that in spite of essential improvement in comparison with “simple” scaled mass-matrix preconditioners in certain cases, none of the considered approaches provides satisfactory convergence rates in the case of small viscosity coefficients and sufficiently complex (e.g., circulating) advection vector field.
منابع مشابه
An Implicit Approximate Inverse Preconditioner for Saddle Point Problems
We present a preconditioner for saddle point problems which is based on an approximation of an implicit representation of the inverse of the saddle point matrix. Whereas this preconditioner does not require an approximation to the Schur complement, its theoretical analysis yields some interesting relationship to some Schurcomplement-based preconditioners. Whereas the evaluation of this new prec...
متن کاملDELFT UNIVERSITY OF TECHNOLOGY REPORT 08-09 SIMPLE-type preconditioners for the Oseen problem
In this report, we discuss block preconditioners used to solve the incompressible Navier-Stokes equations. We emphasize on the approximation of the Schur complement used in SIMPLE-type preconditioners. In the usual formulation, the Schur complement uses scaling with the diagonal of the convection diffusion matrix. A variant of SIMPLE, SIMPLER is studied. Convergence of the SIMPLER preconditione...
متن کاملNeumann-Neumann Domain Decomposition Preconditioners for Linear-Quadratic Elliptic Optimal Control Problems
We present a class of domain decomposition (DD) preconditioners for the solution of elliptic linear-quadratic optimal control problems. Our DD preconditioners are extensions of Neumann–Neumann DD preconditioners, which have been successfully applied to the solution of single PDEs. The DD preconditioners are based on a decomposition of the optimality conditions for the elliptic linear-quadratic ...
متن کاملProbing Methods for Saddle-point Problems
Abstract. Several Schur complement-based preconditioners have been proposed for solving (generalized) saddle-point problems. We consider matrices where the Schur complement has rapid decay over some graph known a priori. This occurs for many matrices arising from the discretization of systems of partial differential equations, and this graph is then related to the mesh. We propose the use of pr...
متن کاملRobust Parameter-Free Multilevel Methods for Neumann Boundary Control Problems
We consider a linear-quadratic elliptic control problem (LQECP). For the problem we consider here, the control variable corresponds to the Neumann data on the boundary of a convex polygonal domain. The optimal control unknown is the one for which the harmonic extension approximates best a specified target in the interior of the domain. We propose multilevel preconditioners for the reduced Hessi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 29 شماره
صفحات -
تاریخ انتشار 2007